Richardson extrapolation applied to boundary element method results in a Dirichlet problem for the Laplace equation
نویسنده
چکیده
منابع مشابه
Richardson Extrapolation Applied to the Numerical Solution of Boundary Integral Equations for a Laplace’s Equation Dirichlet Problem
Richardson extrapolation is applied to improve the accuracy of the numerical solution of boundary integral equations. The boundary integral equations arise from a direct boundary integral method for solving a Laplace’s equation interior Dirichlet problem. Specifically, the Richardson extrapolation is used to improve the accuracy of collocation. Numerical justification is provided to support the...
متن کاملAnalytical D’Alembert Series Solution for Multi-Layered One-Dimensional Elastic Wave Propagation with the Use of General Dirichlet Series
A general initial-boundary value problem of one-dimensional transient wave propagation in a multi-layered elastic medium due to arbitrary boundary or interface excitations (either prescribed tractions or displacements) is considered. Laplace transformation technique is utilised and the Laplace transform inversion is facilitated via an unconventional method, where the expansion of complex-valued...
متن کاملFinite Element Solution for Two Dimensional Laplace Equation with Dirichlet Boundary Conditions
The steady state heat distribution in a plane region is modeled by two dimensional Laplace equation. In this paper Galerkin technique has been used to construct Finite Element model for two dimensional steady heat flow problem with Dirichlet boundary conditions in a rectangular domain. Results are then compared with analytic solution to check the accuracy of the developed scheme.
متن کاملApplication of Boundera Element Method (Bem) to Two-Dimensional Poisson's Eqation
BEM can be used to solve Poisson's equation if the right hand side of the equation is constant because it can easily be transformed to an equivalent Laplace equation. However, if the right hand side is not constant, then such a treatment is impossible and part of the equation can not be transformed over the boundary, hence, the whole domain has to be discretized. Although this takes away impor...
متن کاملAn efficient approximate method for solution of the heat equation using Laguerre-Gaussians radial functions
In the present paper, a numerical method is considered for solving one-dimensional heat equation subject to both Neumann and Dirichlet initial boundary conditions. This method is a combination of collocation method and radial basis functions (RBFs). The operational matrix of derivative for Laguerre-Gaussians (LG) radial basis functions is used to reduce the problem to a set of algebraic equatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Int. J. Comput. Math.
دوره 88 شماره
صفحات -
تاریخ انتشار 2011